3.1221 \(\int \frac {1}{(a-i a x)^{9/4} (a+i a x)^{9/4}} \, dx\)

Optimal. Leaf size=88 \[ \frac {2 x}{5 a^4 \left (x^2+1\right ) \sqrt [4]{a-i a x} \sqrt [4]{a+i a x}}+\frac {6 \sqrt [4]{x^2+1} E\left (\left .\frac {1}{2} \tan ^{-1}(x)\right |2\right )}{5 a^4 \sqrt [4]{a-i a x} \sqrt [4]{a+i a x}} \]

[Out]

2/5*x/a^4/(a-I*a*x)^(1/4)/(a+I*a*x)^(1/4)/(x^2+1)+6/5*(x^2+1)^(1/4)*(cos(1/2*arctan(x))^2)^(1/2)/cos(1/2*arcta
n(x))*EllipticE(sin(1/2*arctan(x)),2^(1/2))/a^4/(a-I*a*x)^(1/4)/(a+I*a*x)^(1/4)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 88, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {42, 199, 197, 196} \[ \frac {2 x}{5 a^4 \left (x^2+1\right ) \sqrt [4]{a-i a x} \sqrt [4]{a+i a x}}+\frac {6 \sqrt [4]{x^2+1} E\left (\left .\frac {1}{2} \tan ^{-1}(x)\right |2\right )}{5 a^4 \sqrt [4]{a-i a x} \sqrt [4]{a+i a x}} \]

Antiderivative was successfully verified.

[In]

Int[1/((a - I*a*x)^(9/4)*(a + I*a*x)^(9/4)),x]

[Out]

(2*x)/(5*a^4*(a - I*a*x)^(1/4)*(a + I*a*x)^(1/4)*(1 + x^2)) + (6*(1 + x^2)^(1/4)*EllipticE[ArcTan[x]/2, 2])/(5
*a^4*(a - I*a*x)^(1/4)*(a + I*a*x)^(1/4))

Rule 42

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(m_), x_Symbol] :> Dist[((a + b*x)^FracPart[m]*(c + d*x)^Frac
Part[m])/(a*c + b*d*x^2)^FracPart[m], Int[(a*c + b*d*x^2)^m, x], x] /; FreeQ[{a, b, c, d, m}, x] && EqQ[b*c +
a*d, 0] &&  !IntegerQ[2*m]

Rule 196

Int[((a_) + (b_.)*(x_)^2)^(-5/4), x_Symbol] :> Simp[(2*EllipticE[(1*ArcTan[Rt[b/a, 2]*x])/2, 2])/(a^(5/4)*Rt[b
/a, 2]), x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]

Rule 197

Int[((a_) + (b_.)*(x_)^2)^(-5/4), x_Symbol] :> Dist[(1 + (b*x^2)/a)^(1/4)/(a*(a + b*x^2)^(1/4)), Int[1/(1 + (b
*x^2)/a)^(5/4), x], x] /; FreeQ[{a, b}, x] && PosQ[a] && PosQ[b/a]

Rule 199

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[(x*(a + b*x^n)^(p + 1))/(a*n*(p + 1)), x] + Dist[(n*(p +
 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (In
tegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[p]
)

Rubi steps

\begin {align*} \int \frac {1}{(a-i a x)^{9/4} (a+i a x)^{9/4}} \, dx &=\frac {\sqrt [4]{a^2+a^2 x^2} \int \frac {1}{\left (a^2+a^2 x^2\right )^{9/4}} \, dx}{\sqrt [4]{a-i a x} \sqrt [4]{a+i a x}}\\ &=\frac {2 x}{5 a^4 \sqrt [4]{a-i a x} \sqrt [4]{a+i a x} \left (1+x^2\right )}+\frac {\left (3 \sqrt [4]{a^2+a^2 x^2}\right ) \int \frac {1}{\left (a^2+a^2 x^2\right )^{5/4}} \, dx}{5 a^2 \sqrt [4]{a-i a x} \sqrt [4]{a+i a x}}\\ &=\frac {2 x}{5 a^4 \sqrt [4]{a-i a x} \sqrt [4]{a+i a x} \left (1+x^2\right )}+\frac {\left (3 \sqrt [4]{1+x^2}\right ) \int \frac {1}{\left (1+x^2\right )^{5/4}} \, dx}{5 a^4 \sqrt [4]{a-i a x} \sqrt [4]{a+i a x}}\\ &=\frac {2 x}{5 a^4 \sqrt [4]{a-i a x} \sqrt [4]{a+i a x} \left (1+x^2\right )}+\frac {6 \sqrt [4]{1+x^2} E\left (\left .\frac {1}{2} \tan ^{-1}(x)\right |2\right )}{5 a^4 \sqrt [4]{a-i a x} \sqrt [4]{a+i a x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.03, size = 70, normalized size = 0.80 \[ -\frac {i \sqrt [4]{1+i x} \, _2F_1\left (-\frac {5}{4},\frac {9}{4};-\frac {1}{4};\frac {1}{2}-\frac {i x}{2}\right )}{5 \sqrt [4]{2} a^3 (a-i a x)^{5/4} \sqrt [4]{a+i a x}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a - I*a*x)^(9/4)*(a + I*a*x)^(9/4)),x]

[Out]

((-1/5*I)*(1 + I*x)^(1/4)*Hypergeometric2F1[-5/4, 9/4, -1/4, 1/2 - (I/2)*x])/(2^(1/4)*a^3*(a - I*a*x)^(5/4)*(a
 + I*a*x)^(1/4))

________________________________________________________________________________________

fricas [F]  time = 0.49, size = 0, normalized size = 0.00 \[ \frac {2 \, {\left (3 \, x^{3} + 4 \, x\right )} {\left (i \, a x + a\right )}^{\frac {3}{4}} {\left (-i \, a x + a\right )}^{\frac {3}{4}} + 5 \, {\left (a^{6} x^{4} + 2 \, a^{6} x^{2} + a^{6}\right )} {\rm integral}\left (-\frac {3 \, {\left (i \, a x + a\right )}^{\frac {3}{4}} {\left (-i \, a x + a\right )}^{\frac {3}{4}}}{5 \, {\left (a^{6} x^{2} + a^{6}\right )}}, x\right )}{5 \, {\left (a^{6} x^{4} + 2 \, a^{6} x^{2} + a^{6}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a-I*a*x)^(9/4)/(a+I*a*x)^(9/4),x, algorithm="fricas")

[Out]

1/5*(2*(3*x^3 + 4*x)*(I*a*x + a)^(3/4)*(-I*a*x + a)^(3/4) + 5*(a^6*x^4 + 2*a^6*x^2 + a^6)*integral(-3/5*(I*a*x
 + a)^(3/4)*(-I*a*x + a)^(3/4)/(a^6*x^2 + a^6), x))/(a^6*x^4 + 2*a^6*x^2 + a^6)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (i \, a x + a\right )}^{\frac {9}{4}} {\left (-i \, a x + a\right )}^{\frac {9}{4}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a-I*a*x)^(9/4)/(a+I*a*x)^(9/4),x, algorithm="giac")

[Out]

integrate(1/((I*a*x + a)^(9/4)*(-I*a*x + a)^(9/4)), x)

________________________________________________________________________________________

maple [F]  time = 0.06, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (-i a x +a \right )^{\frac {9}{4}} \left (i a x +a \right )^{\frac {9}{4}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(-I*a*x+a)^(9/4)/(I*a*x+a)^(9/4),x)

[Out]

int(1/(-I*a*x+a)^(9/4)/(I*a*x+a)^(9/4),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (i \, a x + a\right )}^{\frac {9}{4}} {\left (-i \, a x + a\right )}^{\frac {9}{4}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a-I*a*x)^(9/4)/(a+I*a*x)^(9/4),x, algorithm="maxima")

[Out]

integrate(1/((I*a*x + a)^(9/4)*(-I*a*x + a)^(9/4)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{{\left (a-a\,x\,1{}\mathrm {i}\right )}^{9/4}\,{\left (a+a\,x\,1{}\mathrm {i}\right )}^{9/4}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a - a*x*1i)^(9/4)*(a + a*x*1i)^(9/4)),x)

[Out]

int(1/((a - a*x*1i)^(9/4)*(a + a*x*1i)^(9/4)), x)

________________________________________________________________________________________

sympy [A]  time = 132.49, size = 95, normalized size = 1.08 \[ - \frac {i {G_{6, 6}^{5, 3}\left (\begin {matrix} \frac {9}{8}, \frac {13}{8}, 1 & \frac {1}{2}, \frac {9}{4}, \frac {11}{4} \\\frac {9}{8}, \frac {13}{8}, \frac {7}{4}, \frac {9}{4}, \frac {11}{4} & 0 \end {matrix} \middle | {\frac {e^{- 3 i \pi }}{x^{2}}} \right )} e^{\frac {i \pi }{4}}}{4 \pi a^{\frac {9}{2}} \Gamma \left (\frac {9}{4}\right )} + \frac {i {G_{6, 6}^{2, 6}\left (\begin {matrix} - \frac {1}{2}, 0, \frac {1}{2}, \frac {5}{8}, \frac {9}{8}, 1 & \\\frac {5}{8}, \frac {9}{8} & - \frac {1}{2}, 0, \frac {7}{4}, 0 \end {matrix} \middle | {\frac {e^{- i \pi }}{x^{2}}} \right )}}{4 \pi a^{\frac {9}{2}} \Gamma \left (\frac {9}{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a-I*a*x)**(9/4)/(a+I*a*x)**(9/4),x)

[Out]

-I*meijerg(((9/8, 13/8, 1), (1/2, 9/4, 11/4)), ((9/8, 13/8, 7/4, 9/4, 11/4), (0,)), exp_polar(-3*I*pi)/x**2)*e
xp(I*pi/4)/(4*pi*a**(9/2)*gamma(9/4)) + I*meijerg(((-1/2, 0, 1/2, 5/8, 9/8, 1), ()), ((5/8, 9/8), (-1/2, 0, 7/
4, 0)), exp_polar(-I*pi)/x**2)/(4*pi*a**(9/2)*gamma(9/4))

________________________________________________________________________________________